Mixed-norm estimates for the k-plane transform

نویسنده

  • Javier Duoandikoetxea
چکیده

The Radon transform constitutes a fundamental concept for x-rays in medical imaging, and more generally, in image reconstruction problems from diverse fields. The Radon transform in Euclidean spaces assigns to functions their integrals over affine hyperplanes. This can be extended so that the integration is performed on affine k-dimensional subspaces, the corresponding transform is called k-plane transform. An overview of mixed-norm inequalities for the k-plane transform and related potential-type operators supported on k-planes is presented. Particular attention is given to the action of these operators on classes of radial functions and applications to bounds for the Kakeya maximal operator are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An equivalent representation for weighted supremum norm on the upper half-plane

In this paper, rstly, we obtain some inequalities which estimates complex polynomials on the circles.Then, we use these estimates and a Moebius transformation to obtain the dual of this estimates forthe lines in upper half-plane. Finally, for an increasing weight on the upper half-plane withcertain properties and holomorphic functions f on the upper half-plane we obtain an equivalentrepresenta...

متن کامل

Two Bounds for the X-ray Transform

We use the arithmetic-combinatorial method of Katz and Tao to give mixed-norm estimates for the x-ray transform on R when d ≥ 4. As an application, we obtain an improved estimate for the Hausdorff dimension of (d, k) sets, which are subsets of R containing a translate of every k-plane.

متن کامل

Two Equivalent Presentations for the Norm of Weighted Spaces of Holomorphic Functions on the Upper Half-plane

Introduction In this paper, we intend to show that without any certain growth condition on the weight function, we always able to present a weighted sup-norm on the upper half plane in terms of weighted sup-norm on the unit disc and supremum of holomorphic functions on the certain lines in the upper half plane. Material and methods We use a certain transform between the unit dick and the uppe...

متن کامل

BOUNDS FOR KAKEYA-TYPE MAXIMAL OPERATORS ASSOCIATED WITH k-PLANES

A (d, k) set is a subset of Rd containing a translate of every k-dimensional plane. Bourgain showed that for k ≥ kcr(d), where kcr(d) solves 2kcr−1 + kcr = d, every (d, k) set has positive Lebesgue measure. We give a short proof of this result which allows for an improved Lp estimate of the corresponding maximal operator, and which demonstrates that a lower value of kcr could be obtained if imp...

متن کامل

k-PLANE TRANSFORMS AND RELATED OPERATORS ON RADIAL FUNCTIONS

We prove sharp mixed norm inequalities for the k-plane transform when acting on radial functions and for potential-like operators supported in k-planes. We also study the Hardy-Littlewood maximal operator on k-planes for radial functions for which we obtain a basic pointwise inequality with interesting consequences. §

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011